NATURAL PRODUCTS

Stereoselective Synthesis by Olefin Metathesis and Characterization of η -Carotene (7,8,7',8'-tetrahydro- β , β -carotene)

Noelia Fontán, Rosana Alvarez,* and Angel R. de Lera*

Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain

Supporting Information

ABSTRACT: The purported structure of the elusive η -carotene (7,8,7',8'-tetrahydro- β , β -carotene), a natural C₄₀ carotenoid first detected in the berries of *Lonicera japonica* and in citrus fruits sixty years ago, has been synthesized by olefin cross-metathesis/dimerization of a C₂₁ polyene derived from *trans*-7,8-dihydror-etinal, thus allowing the full characterization of this highly unstable natural product.

number of the more than 700 different carotenoids isolated thus far¹⁻³ are incompletely characterized due to their instability or as a consequence of the scarcity of material isolated from the natural source. 7,8,7',8'-Tetrahydro- β , β carotene (η -carotene; 1g) (Figure 1) stands out from the subgroup of carotenoids whose identity remains uncertain. It was isolated sixty years ago as a very minor carotenoid (1.3%) from berries of Lonicera japonica⁴ and later also from the flavedo of the fruit of the trigeneric hybrid Sinton citrangequat⁵ and other citrus fruits⁶⁻⁸ and in the Siluridae family of catfish.⁹ However, only UV absorption data and insufficient (signals in the aliphatic region, $\delta \sim 1.01-2.12$ ppm) ¹H NMR data⁹ have been reported; thus, no confirmation of its structure has been provided. Moreover, the presence of η -carotene in natural sources appears to depend upon the ripening period of the fruits, and therefore "a full investigation into this pigment must await the availability of larger amounts of ripe Lonicera berries at a time when it is feasible to examine them".⁴ Synthesis is invaluable in providing larger amounts of material to fully characterize and confirm or correct the proposed structures of natural products.

The inherent instability of carotenoids derives from the reactive nature of the highly conjugated polyene skeleton when subjected to a variety of reaction conditions. In contrast, the producing organisms exquisitely handle the basic C_{40} tetraterpenoid and also the diverse carotenoids generated by biosynthetic modifications including cyclizations, oxidations, dehydrogenations, and rearrangement reactions. The photophysical and photochemical properties of these polyenes are responsible for much of the coloration in Nature, as well as for the photoprotection of plants and microorganisms, where they also function as accessory pigments in photosynthesis.¹⁰ Unable to biosynthesize carotenoids, humans ingest them in the diet,

and we may use their antioxidant properties for prevention of certain cardiovascular diseases and cancer.¹⁰

In the past few years palladium-catalyzed cross-coupling processes¹¹ (primarily Negishi,^{12,13} Stille,¹⁴ and Suzuki¹⁵) for C–C single bond formation have found a niche in the polyene field, as they complement traditional C–C double bond condensation methods such as Wittig, Horner–Wadsworth–Emmons (HWE), and Julia–Kocienski olefination reactions.^{16,17} Olefin metathesis^{18–21} is a powerful tactic for the preparation of a great variety of natural products^{22,23} and its use has been extended to the synthesis of the conjugated carotenoid polyene chain.^{24,25} Four fully conjugated C₄₀ undecaene carotenoids, namely, $\beta_{,\beta}$ -carotene (1a), (*R*,*R*)-zeaxanthin (1b), *rac*-iso-zeaxanthin (1c), and lycopene ($\psi_{,}\psi_{-}$ carotene; 1d)²⁵ (Figure 1), and two symmetrical conjugated nonaene carotenoids, namely, violaxanthin (1e) and mimulaxanthin (1f),²⁴ have been prepared by metathesis–dimerization of precursors 2a–f.

In this $C_{21} + C_{21} - C_2 = C_{40}$ approach to carotenoids 1, the C_{21} heptaene/hexaene precursors 2 are obtained by Wittig olefination of *trans*-retinal and ring/chain-modified or acyclic analogues.²⁵ Application of the same strategy to η -carotene (1g) requires the preparation of stereochemically homogeneous nonconjugated hexaene 2g, itself obtained from 7,8-dihydroretinal (12) (Scheme 1). Compounds with the general 7,8-dihydroretinal structure but with 11-*cis* geometry have been described previously,²⁶ but no synthesis of the *trans* isomer has been reported.

Received:
 March 26, 2012

 Published:
 May 15, 2012

Article

Figure 1. Symmetrical carotenoids 1a-f previously prepared by acyclic cross-metathesis/dimerization and the proposed structure of η -carotene (1g).

Scheme 1^a

^aReagents and conditions: (a) *n*-BuLi, DMPU, THF, -78 °C, 47 h, 90%, 9:1 *E/Z*; (b) DIBAL-H, THF, -78 °C, 30 min, 97%; (c) MnO₂, Na₂CO₃, CH₂Cl₂, 25 °C, 3 h, 85%; (d) *n*-BuLi, DMPU, THF, -78 to 25 °C, 2 h, 97%, 20:3:1 mixture of (2*E*,4*E*,6*E*)/(2*E*,4*E*,6*Z*)/(2*Z*,4*E*,6*E*) isomers; (e) DIBAL-H, THF, -78 °C, 45 min, 91%; (f) MnO₂, Na₂CO₃, CH₂Cl₂, 25 °C, 1 h, 82%; (g) CH₃PPh₃Br, NaHMDS or *n*-BuLi, HMPA, THF, -78 °C, 2 h, 80%; (h) 2nd-generation Grubbs' catalyst 3, CH₂Cl₂, 50 °C, 6.5 h (1g, 60%; 13, 9%; 14, 5%; 2g, 9%).

RESULTS AND DISCUSSION

The synthesis of *trans*-7,8-dihydroretinal $(12)^{26}$ (Scheme 1) started with the HWE reaction of commercial 7,8-dihydro- β ionone (4) (which can also be obtained from β -ionone using Bu_3SnH and catalytic amounts of $Pd(PPh_3)_4^{27}$) and 2-(diethoxyphosphoryl)acetate (5) using n-BuLi as base in THF and DMPU as cosolvent. Ester 6 was obtained in 90% yield as a 9:1 mixture of double-bond isomers, which were separated by chromatography. Subsequent reduction of 6 with DIBAL-H, followed by MnO₂ oxidation, provided aldehyde 8 in good yield as a mixture of *all-trans*/9-cis isomers in a \geq 37:1 ratio. A second HWE olefination with ethyl (E)-4-(diethoxyphosphoryl)-3-methylbut-2-enoate (9) led in excellent yield (97%) to ester 10 as a 20:3:1 mixture of (2E, 4E, 6E)/(2E,4E,6Z)/(2Z,4E,6E) isomers. Subsequent reduction of the purified trans isomer with DIBAL-H in THF followed by MnO2 oxidation afforded trans-7,8-dihydroretinal (12) in good yield. Wittig olefination of 12 with methyltriphenylphosphonium

bromide (13) using NaHMDS or *n*-BuLi as base and HMPA or DMPU as cosolvent afforded hexaene 2g.

Polyene 2g was subjected to the optimized conditions for cross-metathesis described for $\beta_{,\beta}$ -carotene (1a),²⁵ yielding 7,8,7',8'-tetrahydro- β , β -carotene (η -carotene; 1g) in 60% yield together with small amounts of unreacted 2g (9%) and the shorter nonconjugated diene 13 (9%) and triene 14 (5%) products, which must form through alternative metathesis of other double bonds in the starting pentaene or in 1g. The structures of 13 and 14 were confirmed by independent synthesis by Wittig reaction of 4 and 8, respectively. Similar to previous examples (1a-f), the greater reactivity of the ruthenium carbenes with the terminal monosubstituted double bond when compared to the sterically more hindered tetra-, tri-, and disubstituted double bonds of 2g produced the desired symmetrical polyene 1g with remarkable site-selectivity and trans stereoselectivity. When nonstereochemically homogeneous trans/cis mixtures of 2g were used in the metathesis reaction, the mixtures of double-bond isomers of 1g obtained

proved difficult to separate by HPLC (Develosil C30-UG or Spherisorb CN columns). Moreover, the reactivity of the allylic positions makes **1g** highly prone to oxidation and decomposition. In fact, attempts to acquire MS data (ESI⁺ or EI ionization) of **1g** were complicated by the appearance of a [M + 16] peak corresponding to an oxidized derivative. Likewise, samples left under air showed red-shifted UV spectra indicative of allylic oxidations.

The UV spectrum of synthetic $\mathbf{1g} [\lambda_{\text{max}} \text{ in acetone } (\varepsilon) 380 (103 500), 402 (131 500), and 427 (121 000)] was coincidental with that published for the product isolated from natural sources.^{4,6–8} The extinction coefficients, although not reported in the original disclosure, are also similar to those described for the acyclic analogue 7,8,7',8'-tetrahydro-<math>\psi$, ψ -carotene (ζ -carotene),^{2,28,29} and therefore we surmise that the proposed natural product structure must correspond to **1g**. From the biogenetic perspective³⁰ it is possible that, in the natural sources, ζ -carotene functions as a substrate for lycopene β -cyclase to first produce monocyclic dihydro- β -zeacarotene and then dicyclic η -carotene. In fact, both η -carotene and ζ -carotene were isolated as products of the lycopene cyclase gene *crtY* from the epiphytic bacterium *Erwinia uredovora* expressed in *E. coli.*³¹

In summary, we have achieved the first total synthesis of the purported structure of 7,8,7',8'-tetrahydro- β , β -carotene (η -carotene) using the acyclic cross-metathesis/dimerization reaction, thus making possible complete spectroscopic characterization of this nonaene with a central conjugated chain of seven double bonds.

EXPERIMENTAL SECTION

General Experimental Procedures. For general procedures, see ref 25.

General Procedure for the Horner-Wadsworth-Emmons Reaction. A cooled (0 $^{\circ}$ C) solution of ethyl 2-(diethoxyphosphoryl)acetate (5, 0.94 g, 4.192 mmol) in THF (2.3 mL) was treated with n-BuLi (2.56 mL, 1.5 M in hexane, 3.843 mmol) and DMPU (6.98 mL, 57.722 mmol) and stirred for 30 min. The mixture was cooled to -78°C, and a solution of 4-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)butan-2one (4, 0.34 g, 1.747 mmol) in THF (4.7 mL) was added. The resulting mixture was stirred for 30 min at -78 °C and then allowed to warm to 25 °C for 47 h. The reaction mixture was quenched with H_2O_1 and the aqueous layer was extracted with ethyl ether (3×). The combined organic layers were washed with water (2x) and brine (2x)and dried (Na₂SO₄), and the solvent was evaporated. The residue was purified by column chromatography (CC) (silica gel, 98:2 hexane/ EtOAc) to afford 0.378 g (82%) of a colorless oil identified as ethyl (E)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-enoate (E-6) and 0.039 g (8%) of ethyl (Z)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-enoate (Z-6). An aliquot of the mixture of isomers was purified by HPLC (Prep Novapak HR silica, 6 μ m, 19 \times 300 mm, 98/2 hexane/EtOAc, 3 mL/min; $t_{\rm R}(Z) = 23.1$ min and $t_{\rm R}(E)$ = 27.0 min).

Ethyl (E)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-enoate (E-6): colorless oil; IR (NaCl) ν 2928 (m, C–H), 2865 (m, C–H), 1717 (s, C=O), 1649 (m), 1445 (w), 1222 (s), 1144 (s) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 5.93 (1H, s, H₂), 4.08 (2H, q, *J* = 7.1 Hz, CO₂CH₂CH₃), 2.29 (3H, d, *J* = 1.0 Hz, CH₃), 2.07 (4H, app s, 2 × CH₂), 1.83 (2H, t, *J* = 6.2 Hz, CH₂), 1.56–1.49 (2H, m, CH₂), 1.47 (3H, s, CH₃), 1.40–1.37 (2H, m, CH₂), 1.04 (3H, t, *J* = 7.1 Hz, CO₂CH₂CH₃), 0.94 (6H, s, 2 × CH₃); ¹³C NMR (C₆D₆, 100 MHz) δ 166.6 (C), 160.2 (C), 136.5 (C), 127.9 (C), 115.8 (CH), 59.4 (CH₂), 41.7 (CH₂), 40.1 (CH₂), 35.2 (C), 33.0 (CH₂), 28.7 (CH₃, 2×), 27.4 (CH₂), 19.9 (CH₃), 19.9 (CH₂), 18.9 (CH₃), 14.5 (CH₃); HRMS (ESI⁺) *m*/z 265.2159 (calcd for C₁₇H₂₉O₂ [M + H]⁺, 265.2162).

Ethyl (Z)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-enoate (Z-6): colorless oil; IR (NaCl) ν 2927 (m, C-H), 2864 (m, C–H), 1717 (s, C=O), 1648 (m), 1442 (w), 1236 (m), 1200 (m), 1156 (s) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 5.75 (1H, s, H₂), 4.03 (2H, q, J = 7.1 Hz, CO₂CH₂CH₃), 2.92–2.88 (2H, m, <u>CH₂</u>), 2.30– 2.26 (2H, m, CH₂), 1.91 (2H, t, J = 6.0 Hz, CH₂), 1.81 (3H, s, CH₃), 1.62 (3H, d, J = 1.2 Hz, CH₃), 1.59–1.55 (2H, m, CH₂), 1.48–1.45 (2H, m, CH₂), 1.19 (6H, s, 2 × CH₃), 1.00 (3H, t, J = 7.1 Hz, CO₂CH₂<u>CH₃</u>); ¹³C NMR (C₆D₆, 100 MHz) δ 166.0 (C), 160.1 (C), 137.1 (C), 128.2 (C), 116.5 (CH), 59.4 (CH₂), 40.4 (CH₂), 35.4 (C), 34.4 (CH₂), 33.3 (CH₂), 28.9 (CH₃, 2×), 27.5 (CH₂), 25.0 (CH₃), 20.1 (CH₃), 20.0 (CH₂), 14.4 (CH₂); HRMS (ESI⁺) *m/z* 265.2167 (calcd for C₁₇H₂₉O₂ [M + H]⁺, 265.2162). Double-bond geometry assignment was based on NOE measurements.

General Procedure for the DIBAL-H Reduction. To a solution of *E*-6 (0.337 g, 1.274 mmol) in THF (12.8 mL) was added dropwise diisobutylaluminum hydride (5.1 mL, 1 M in hexane, 5.1 mmol) at -78 °C. After stirring for 30 min at the same temperature, a saturated aqueous solution of potassium sodium (+)-tartrate was added, and the mixture was stirred for 4 h. The mixture was extracted with ethyl ether (1×), and the aqueous layer was saturated with NaCl and then extracted with ethyl ether (3×). The organic extracts were dried (Na₂SO₄), and the solvent was evaporated, affording 0.271 g (97%) of an oil identified as (*E*)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-en-1-ol (*E*-7), which was used in the next reaction without further purification.

General Procedure for the MnO₂ Oxidation. To a cooled (0 $^{\circ}$ C) solution of (*E*)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-en-1-ol (*E*-7) (0.263 g, 1.181 mmol) obtained above in THF (23 mL) were added activated manganese dioxide (1.912 g, 21.256 mmol) and sodium carbonate (2.253 g, 21.256 mmol). The reaction mixture was stirred at 25 $^{\circ}$ C for 5 h and then filtered through a pad of Celite. The solvent was evaporated to afford 0.220 g (85%) of a white solid identified as (*E*)-3-methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'yl)pent-2-enal (*E*-8).

(E)-3-Methyl-5-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)pent-2-enal (E-8): white solid; UV (MeOH) λ_{max} 237 nm; IR (NaCl) ν 2930 (m, C–H), 2867 (m, C–H), 1675 (s, C=O), 1445 (w), 1192 (w), 1119 (w) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 9.92 (1H, d, J = 7.7 Hz, CHO), 5.93 (1H, d, J = 7.7 Hz, H₂), 1.94 (4H, app s, 2 × CH₂), 1.82 (2H, t, J = 6.3 Hz, CH₂), 1.58 (3H, d, J = 1.2 Hz, CH₃), 1.55–1.50 (2H, m, CH₂), 1.40–1.37 (3H, s, CH₃), 1.4–1.3 (2H, m, CH₂), 0.93 (6H, s, 2 × CH₃); ¹³C NMR (C₆D₆, 100 MHz) δ 190.0 (CH), 162.1 (C), 136.3 (C), 128.1 (C), 127.2 (CH), 41.2 (CH₂), 40.1 (CH₂), 35.2 (C), 33.0 (CH₂), 28.7 (CH₃, 2×), 26.9 (CH₂), 19.9 (CH₃), 19.9 (CH₂), 17.0 (CH₃); HRMS (ESI⁺) m/z 221.1897 (calcd for C₁₅H₂₅O [M + H]⁺, 221.1899).

Ethyl (2*E*,4*E*,6*E*)-(3,7-Dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienoate (2*E*,4*E*,6*E*-10). Following the general procedure for the HWE reaction, the reaction of *E*-9 (0.308 g, 1.168 mmol), *n*-BuLi (0.78 mL, 1.37 M in hexane, 1.07 mmol), DMPU (0.33 mL, 2.724 mmol), and (*E*)-3-methyl-5-(2',6',6'trimethylcyclohex-1'-en-1'-yl)pent-2-enal (*E*-8) (0.214 g, 0.973 mmol) in THF (1.75 mL) afforded, after purification by CC (silica gel, from 97.5:2.5 hexane/Et₃N to 97.5:2.5 hexane/EtOAc), 0.312 g (97%) of a colorless oil identified as a 20:3:1 mixture of (2*E*,4*E*,6*E*)/ (2*E*,4*E*,6*Z*)/(2*Z*,4*E*,6*E*) isomers of the title compound, which were separated by HPLC (Prep Novapak HR silica 60 Å, 19 × 300 mm, 98/ 2 hexane/EtOAc, 3 mL/min; $t_{\rm R}(2Z,4E,6E) = 24.5$ min, $t_{\rm R}(2E,4E,6Z) =$ 26.4 min, and $t_{\rm R}(2E,4E,6E) = 28.7$ min).

Ethyl (2E,4E,6E)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienoate (2E,4E,6E-10): colorless oil; UV (MeOH) λ_{max} 314 nm; IR (NaCl) ν 2925 (m, C–H), 2865 (m, C–H), 1711 (s, C==O), 1603 (s), 1441 (w), 1237 (m), 1148 (s) cm⁻¹; ¹H NMR (C₆D_{6'}, 400 MHz) δ 6.81 (1H, dd, *J* = 15.2, 11.0 Hz, H₅), 6.11 (1H, d, *J* = 15.2 Hz, H₄), 5.99 (1H, d, *J* = 11.0 Hz, H₆), 5.98 (1H, s, H₂), 4.08 (2H, q, *J* = 7.1 Hz, CO₂<u>CH₂</u>CH₃), 2.49 (3H, s, CH₃), 2.18 (4H, app s, 2 × CH₂), 1.89 (2H, t, *J* = 6.2 Hz, CH₂), 1.65 (3H, s, CH₃), 1.61 (3H, s, CH₃), 1.69–1.55 (2H, m, CH₂), 1.46–1.43 (2H, m, CH₂), 1.05 (6H, m, 2 × CH₃), 1.01 (3H, t, *J* = 7.1 Hz, CO₂CH₂<u>CH₃</u>); ¹³C NMR (C₆D_{6'} 100 MHz) δ 166.9 (C), 153.1 (C), 144 (C), 136.9 (C), 134.2 (CH), 131.1 (CH), 127.7 (C), 125.2 (CH), 119.0 (CH), 59.6 (CH₂), 41.3 (CH₂), 40.2 (CH₂), 35.3 (C), 33.1 (CH₂), 28.8 (CH₃, 2×), 28.0 (CH₂), 20.0 (CH₃), 19.9 (CH₂), 17.0 (CH₃), 14.5 (CH₃), 13.9 (CH₃); HRMS (ESI⁺) m/z 331.2631 (calcd for C₂₂H₃₅O₂ [M + H]⁺, 331.2632). Double-bond geometry assignment was based on NOE measurements.

Ethyl (2E,4E,6Z)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienoate (2E,4E,6Z-10): colorless oil; ¹H NMR (C₆D₆, 400 MHz) δ 7.05–6.98 (1H, m, H₅), 6.13 (1H, d, J = 15.3 Hz, H₄), 5.98 (1H, s, H₂), 5.85 (1H, d, J = 10.8 Hz, H₆), 4.08 (2H, q, J = 7.1 Hz, CO₂<u>CH</u>₂CH₃), 2.54 (3H, d, J = 1.0 Hz, CH₃), 2.28–2.24 (2H, m, CH₂), 2.10–2.06 (2H, m, CH₂), 1.87–1.81 (2H, m, CH₂), 1.74 (3H, s, CH₃), 1.59 (3H, s, CH₃), 1.57–1.53 (2H, m, CH₂), 1.43–1.40 (2H, m, CH₂), 1.05 (6H, m, 2 × CH₃), 1.01 (3H, t, J = 7.1 Hz, CO₂CH₃CH₃).

Ethyl ($\overline{2Z}$, 4E,6E)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienoate (2Z,4E,6E-10): colorless oil; ¹H NMR (C₆D₆, 400 MHz) δ 8.42 (1H, d, J = 15.6 Hz, H₄), 6.86 (1H, dd, J = 15.5, 11.0 Hz, H₃), 6.25 (1H, d, J = 11.0 Hz, H₆), 5.77 (1H, s, H₂), 4.05 (2H, q, J = 7.1 Hz, CO₂CH₂CH₃), 2.14 (4H, app s, 2 × CH₂), 1.88 (2H, t, J = 6.4 Hz, CH₂), 1.77 (3H, s, CH₃), 1.69 (3H, s, CH₃), 1.58–1.55 (5H, m, CH₃ + CH₂), 1.45–1.42 (2H, m, CH₂), 1.05 (6H, m, 2 × CH₃), 1.01 (3H, t, J = 7.1 Hz, CO₂CH₂CH₃).

(2E,4E,6E)-3,7-Dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienal (2E,4E,6E-12). Following the general procedure for the DIBAL-H reduction, the reaction of 2E,4E,6E-10 (0.31 g, 0.938 mmol) and diisobutylaluminum hydride (3.75 mL, 1 M in hexane, 3.75 mmol) in THF (9.4 mL) afforded, after purification by column chromatography (silica gel, from 95:2:3 hexane/EtOAc/Et₃N to 80:20 hexane/EtOAc), 0.246 g (91%) of (2E,4E,6E)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trien-1-ol (2E,4E,6E-11).

Following the general procedure for the MnO_2 oxidation, the reaction of 2*E*,4*E*,6*E*-11 (0.245 g, 0.849 mmol), manganese dioxide (1.375 g, 15.288 mmol), and sodium carbonate (1.62 g, 15.287 mmol) in THF (16.3 mL) afforded 0.199 g (82%) of a white solid identified as (2*E*,4*E*,6*E*)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)-nona-2,4,6-trienal (2*E*,4*E*,6*E*-12), which was used in the next step without further purification.

(2E,4E,6E)-3,7-Dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienal (2E,4E,6E-12): white solid; UV (MeOH) λ_{max} 341 nm; IR (NaCl) ν 2927 (m, C–H), 2865 (w, C–H), 1661 (s, C=O), 1630 (w), 1594 (m) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 10.03 (1H, d, *J* = 7.9 Hz, CHO), 6.73 (1H, dd, *J* = 15.1, 11.3 Hz, H₅), 6.00–5.94 (3H, m, H₂ + H₄ + H₆), 2.18 (4H, app s, 2 × CH₂), 1.90 (2H, t, *J* = 6.0 Hz, CH₂), 1.74 (3H, s, CH₃), 1.65 (3H, s, CH₃), 1.61 (3H, s, CH₃), 1.58–1.55 (2H, m, CH₂), 1.47–1.44 (2H, m, CH₂), 1.05 (6H, s, 2 × CH₃); ¹³C NMR (C₆D₆, 100 MHz) δ 189.9 (CH), 153.6 (C), 145.5 (C), 136.8 (C), 133.7 (CH), 132.0 (CH), 129.4 (CH), 127.8 (C), 125.1 (CH), 41.3 (CH₂), 40.2 (CH₂), 35.3 (C), 33.1 (CH₂), 28.8 (CH₃, 2×), 27.9 (CH₂), 20.0 (CH₃), 20.1 (CH₂), 17.1 (CH₃), 12.6 (CH₃); HRMS (ESI⁺) *m*/*z* 287.2365 (calcd. for C₂₀H₃₁O ([M + H]⁺), 287.2369).

(3'E,5'E,7'E)-2-(3',7'-Dimethyldeca-3',5',7',9'-tetraen-1'-yl)-1,3,3-trimethylcyclohex-1-ene (3'E,5'E,7'E-2g). To a suspension of methyltriphenylphosphonium bromide (0.227 g, 0.635 mmol) in THF (0.6 mL) were added dropwise n-BuLi (0.25 mL, 2.27 M in hexane, 0.564 mmol) and DMPU (0.07 mL, 0.529 mmol), and the resulting mixture was stirred for 30 min at 25 °C. The mixture was cooled to -78 °C, and a solution of (2E,4E,6E)-3,7-dimethyl-9-(2',6',6'-trimethylcyclohex-1'-en-1'-yl)nona-2,4,6-trienal (0.101 g, 0.353 mmol) in THF 4.5 mL) was added. After stirring for 1 h at -78 °C the reaction was allowed to warm to 25 °C for 1 h, and hexane was added. The combined organic layers were washed with brine $(3\times)$ and water $(3\times)$ and dried (Na_2SO_4) , and the solvent was evaporated. The residue was purified by CC (silica gel, from 99:1 hexane/Et₃N to 99:1 hexane/EtOAc) to afford 0.080 g (80%) of a yellow oil identified as (3'E,5'E,7'E)-2-(3',7'-dimethyldeca-3',5',7',9'-tetraen-1'-yl)-1,3,3-trimethylcyclohex-1-ene (3'E,5'E,7'E-2g).

(3'E,5'E,7'E)-2-(3',7'-Dimethyldeca-3',5',7',9'-tetraen-1'-yl)-1,3,3trimethylcyclohex-1-ene (3'E,5'E,7'E-2g): yellow oil; UV (MeOH) $\begin{array}{l} \lambda_{\rm max} \ 321, \ 307 \ {\rm nm}; \ {\rm IR} \ ({\rm NaCl}) \ \nu \ 3040 \ ({\rm w}, {\rm C-H}), \ 2927 \ ({\rm s}, {\rm C-H}), \ 2865 \ ({\rm m}, \ {\rm C-H}), \ 1610 \ ({\rm w}), \ 1471 \ ({\rm w}), \ 1441 \ ({\rm w}), \ 983 \ ({\rm m}), \ 954 \ ({\rm m}), \ 897 \ ({\rm m}) \ {\rm cm}^{-1}; \ ^1{\rm H} \ {\rm NMR} \ ({\rm C}_6{\rm D}_6, \ 400 \ {\rm MHz}) \ \delta \ 6.75-6.60 \ (2{\rm H}, \ {\rm m}, \ {\rm H}_{5'} \ + \ {\rm H}_9), \ 6.32 \ (1{\rm H}, \ d, \ J = 15.2 \ {\rm Hz}, \ {\rm H}_6), \ 6.17 \ (2{\rm H}, \ d, \ J = 11.1 \ {\rm Hz}, \ {\rm H}_{4'} \ + \ {\rm H}_8), \ 5.20 \ (1{\rm H}, \ d, \ J = 16.7 \ {\rm Hz}, \ {\rm H}_{102}), \ 5.07 \ (1{\rm H}, \ d, \ J = 10.2 \ {\rm Hz}, \ {\rm H}_{10b}), \ 2.24 \ (4{\rm H}, \ {\rm app} \ {\rm s}, \ 2 \ {\rm CH}_2), \ 1.90 \ (2{\rm H}, \ t, \ J = 6.2 \ {\rm Hz}, \ {\rm CH}_2), \ 1.81 \ (3{\rm H}, \ {\rm s}, \ {\rm CH}_3), \ 1.61-1.55 \ (2{\rm H}, \ {\rm m}, \ {\rm CH}_2), \ 1.47-1.44 \ (2{\rm H}, \ {\rm m}, \ {\rm CH}_2), \ 1.06 \ (6{\rm H}, \ {\rm s}, \ 2 \ {\rm CH}_3); \ 1.3C \ {\rm NMR} \ ({\rm C}_6{\rm D}_6, \ 100 \ {\rm MHz}) \ \delta \ 139.9 \ ({\rm C}), \ 137.1 \ ({\rm C}), \ 136.5 \ ({\rm C}), \ 135.8 \ ({\rm CH}), \ 137.8 \ ({\rm CH}_2), \ 1.36 \ ({\rm CH}_2), \ 1.30 \ ({\rm CH}_2), \ 1.30 \ ({\rm CH}_2), \ 1.30 \ ({\rm CH}_2), \ 1.35.8 \ ({\rm CH}), \ 137.0 \ ({\rm CH}_2), \ 2.24 \ ({\rm CH}_2), \ 40.2 \ ({\rm CH}_2), \ 35.3 \ ({\rm C}), \ 33.1 \ ({\rm CH}_2), \ 2.8 \ ({\rm CH}_3); \ 2.8 \ ({\rm CH}_3), \ 2.8 \ ({\rm CH}_3); \ 2.8 \ ({\rm CH}_3); \ 1.50 \ ({$

7,8,7',8'-Tetrahydro- $\beta_{\beta}\beta$ -carotene (1g). To a degassed solution of (3'E,5'E,7'E-2g) (0.047 g, 0.165 mmol) in CH₂Cl₂ (3.1 mL) was added Grubbs' second-generation catalyst (0.014 g, 0.016 mmol). After stirring for 5 h at 50 °C, the reaction mixture was filtered through Celite, which was washed with acetone, and the solvent was evaporated. The residue was purified by CC (C_{18} silica gel, from 90:10 CH₃CN/CH₂Cl₂ to 70:30 CH₃CN/CH₂Cl₂ containing small amounts of BHT, butylated hydroxytoluene (2,6-di-tert-butyl-p-cresol)) to afford 0.027 g (60%) of a reddish solid identified as 7,8,7',8'tetrahydro- $\beta_{,\beta}$ -carotene (1g) and a mixture, which was purified by a second CC (silica gel, from hexane to 99:1 hexane/EtOAc) to afford, in order of elution, 2.8 mg (9%) of an oil identified as 1,3,3-trimethyl-2-(3'-methylbut-3'-en-1'-yl)cyclohex-1-ene (13), 2.0 mg (5%) of another oil identified as (E)-1,3,3-trimethyl-2-(3'-methylhexa-3',5'dien-1'-yl)cyclohex-1-ene (E-14), and 4.1 mg (9% recovered) of starting material.

7,8,7',8'-Tetrahydro- β , β -carotene (1g): reddish solid; UV (acetone) λ_{max} (log ε) 380 (5.01), 402 (5.12), 427 (5.08) nm; (hexane) $\lambda_{\rm max}$ 378, 400, 426 nm. IR (NaCl) ν 3027 (w, C–H), 2924 (s, C–H), 2851 (m, C-H), 1441 (m), 1061 (m) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 6.72–6.66 (4H, m, 2H₁₁ + 2H₁₅), 6.45 (2H, d, J = 15.0 Hz, $2H_{12}$), 6.35 (2H, d, J = 9.6 Hz, $2H_{14}$), 6.25 (2H, d, J = 11.0 Hz, $2H_{10}$), 2.28–2.25 (8H, m, 4 × CH₂), 1.92–1.89 (10H, m, 2 × CH₃ + 2 × CH_2), 1.81 (6H, s, 2 × CH_3), 1.64 (6H, s, 2 × CH_3), 1.62–1.55 (4H, m, $2 \times CH_2$), 1.47–1.45 (4H, m, $2 \times CH_2$), 1.08 (6H, s, $2 \times CH_3$) (signals of BHT stabilizer are not reported); ${}^{13}C$ NMR (C₆D₆, 100 MHz) δ 139.9 (C), 137.2 (C), 136.4 (C), 136.2 (CH), 132.3 (CH), 130.3 (CH), 127.5 (C), 126.2 (CH), 125.4 (CH), 41.4 (CH₂), 40.2 (CH_2) , 35.3 (C), 33.1 (CH₂), 28.9 (CH₃, 2×), 28.3 (CH₂), 20.1 (CH₃), 20.0 (CH₂), 17.0 (CH₃), 13.0 (CH₃) (signals of BHT stabilizer are not reported); HRMS (ESI⁺) m/z 540.4703 (calcd for $C_{40}H_{60}$ [M]⁺, 540.4689).

The ¹H NMR data coincide with those described previously⁹ for signals corresponding to the aliphatic region of this compound in CDCl₃: δ 2.12 (8H, m), 1.97 (6H, s), 1.86 (6H, s), 1.66 (6H, s), 1.01 (12H, s).

1,3,3-Trimethyl-2-(3'-methylbut-3'-en-1'-yl)cyclohex-1-ene (13): colorless oil; IR (NaCl) ν 2966 (s, C–H), 2929 (s, C–H), 2909 (s, C–H), 2865 (m), 1649 (w), 1472 (w), 1455 (w), 885 (m) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 4.88 (1H, s, H₄₄), 4.83 (1H, s, H_{4B}), 2.25– 2.14 (4H, m, 2 × CH₂), 1.90 (2H, t, *J* = 6.3 Hz, CH₂), 1.72 (3H, s, CH₃), 1.58–1.53 (5H, m, CH₃ + CH₂), 1.45–1.42 (2H, m, CH₂), 1.05 (6H, t, *J* = 0.5 Hz, 2 × CH₃); ¹³C NMR (C₆D₆, 100 MHz) δ 146.5 (C), 137.3 (C), 127.3 (C), 109.8 (CH₂), 40.3 (CH₂), 38.9 (CH₂), 35.3 (C), 33.1 (CH₂), 28.8 (CH₃, 2×), 27.8 (CH₂), 22.7 (CH₃), 20.0 (CH₂), 19.9 (CH₃); MS (EI⁺) *m*/*z* 192 [M]⁺ (13), 177 (20), 137 (83), 121 (18), 107 (22), 95 (100), 93 (21), 91 (19), 81 (49), 79 (20); HRMS (EI⁺) *m*/*z* 192.1882 (calcd. for C₁₄H₂₄, 192.1878).

This compound was alternatively synthesized from dihydro- β ionone 4: Following the general procedure for the Wittig reaction, the reaction of methyltriphenylphosphonium bromide (0.652 g, 1.825 mmol) with *n*-BuLi (1.10 mL, 1.46 M in hexane, 1.622 mmol), DMPU (0.18 mL, 1.521 mmol), and 4-(2',6',6'-trimethylcyclohex-1'-en-1'yl)butan-2-one) (4) (0.197 g, 1.014 mmol) in THF (15 mL) afforded, after purification by CC (silica gel, from 95:3:2 hexane/EtOAc/Et₃N to 95:5 hexane/EtOAc), 0.120 g (62%) of a colorless oil identified as 1,3,3-trimethyl-2-(3'-methylbut-3'-en-1'-yl)cyclohex-1-ene (13).

(E)-1,3,3-Trimethyl-2-(3'-methylhexa-3',5'-dien-1-yl)cyclohex-1ene (E-14): colorless oil; UV (MeOH) λ_{max} 237 nm; IR (NaCl) ν 3083 (w, C–H), 2952 (s, C–H), 2928 (s, C–H), 2865 (m, C–H), 2829 (w, C–H), 1650 (w), 1472 (w), 895 (m) cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ 6.64 (1H, ddd, J = 16.8, 10.8, 10.2 Hz, H₃.), 6.08 (1H, d, J = 10.8 Hz, H₄.), 5.17 (1H, d, J = 16.8 Hz, H_{6a}.), 5.03 (1H, d, J = 10.2 Hz, H_{6b}.), 2.18 (4H, app s, 2 × CH₂), 1.87 (2H, t, J = 6.1 Hz, CH₂), 1.68 (3H, s, CH₃), 1.59–1.53 (5H, m, CH₃ + CH₂), 1.45–1.42 (2H, m, CH₂), 1.03 (6H, s, 2 × CH₃); ¹³C NMR (C₆D₆, 100 MHz) δ 139.9 (C), 137.1 (C), 133.9 (CH), 127.4 (C), 125.8 (CH), 114.9 (CH₂), 40.9 (CH₂), 40.2 (CH₂), 35.3 (C), 33.1 (CH₂), 28.8 (CH₃, 2×), 28.0 (CH₂), 20.0 (CH₃), 19.9 (CH₂), 16.7 (CH₃) ppm; MS (EI⁺) m/z 218 [M]⁺ (3), 137 (100), 95 (97), 81 (54), 79 (22); HRMS (EI⁺) m/z 218.2042 (calcd for C₁₆H₂₆, 218.2035).

This compound was alternatively synthesized from dihydro- β ionylideneacetaldehyde (8). Following the general procedure for the Wittig reaction, the reaction of methyltriphenylphosphonium bromide (0.277 g, 0.776 mmol) with *n*-BuLi (0.47 mL, 1.46 M in hexane, 0.690 mmol), DMPU (0.08 mL, 0.646 mmol), and (*E*)-3-methyl-5-(2',6',6'trimethylcyclohex-1'-en-1'-yl)pent-2-enal (*E*-8) (0.095 g, 0.431 mmol) in THF (6.5 mL) afforded, after purification by CC (silica gel saturated with 2% Et₃N, 99:1 hexane/EtOAc), 0.055 g (59%) of a colorless oil identified as (*E*)-1,3,3-trimethyl-2-(3'-methylhexa-3',5'dien-1'-yl)cyclohex-1-ene (*E*-14).

ASSOCIATED CONTENT

S Supporting Information

Copies of spectra of the compounds described in the text. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +34-986-812316. Fax: +34-986-818622. E-mail: qolera@ uvigo.es (A.R.L.); Tel: +34-986-812632. Fax: +34-986-818622. E-mail: rar@uvigo.es (R.A.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to the Ministerio de Economía y Competitividad-Spain (SAF2010-17935-FEDER-Fondos Europeos para el Desarrollo Regional; FPU Fellowship to N.F.) and Xunta de Galicia (Grant 08CSA052383PR from DXI+D+i; Consolidación 2006/15 and from DXPCTSUG; INBIOMED) for financial support.

REFERENCES

- (1) Britton, G.; Liaaen-Jensen, S.; Pfander, H. E. Carotenoids. Part 1A. Isolation and Analysis; Birkhäuser: Basel, 1995.
- (2) Britton, G.; Liaaen-Jensen, S.; Pfander, H., Eds. Carotenoids. Part 1B. Spectroscopy; Birkhäuser: Basel, 1995.
- (3) Britton, G.; Liaaen-Jensen, S.; Pfander, H., Eds. Carotenoids Handbook; Birkhäuser: Basel, 2004.
- (4) Goodwin, T. W. Biochem. J. 1952, 51, 458-463.
- (5) Yokoyama, H.; White, M. J. Phytochemistry 1966, 5, 1159-1173.
- (6) Yokoyama, H.; White, M. J. J. Agric. Food Chem. 1967, 15, 693–696.
- (7) Yokoyama, H.; Vandercook, C. E. J. Food Sci. 1967, 32, 42–48.
- (8) Takaichi, S. *Photosynth. Res.* 2000, 65, 93–99.
 (9) Tsushima, M.; Ikuno, Y.; Nagata, S.; Kodama, K.; Matsuno, T.
- *Comp. Biochem. Physiol. B: Biochem. Mol. Biol.* **2002**, *133*, 331–336.
- (10) Rao, A. V.; Rao, L. G. Pharmacol. Res. 2007, 55, 207-216.

- (11) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–4489.
- (12) Negishi, E.-i.; Wang, G.; Rao, H.; Xu, Z. J. Org. Chem. 2010, 75, 3151–3182.
- (13) Negishi, E.-i. Angew. Chem., Ed. Int. 2011, 50, 6738-6764.
- (14) Espinet, P.; Echavarren, A. M. Angew. Chem., Ed. Int. 2004, 43, 4704–4734.
- (15) Suzuki, A. Angew. Chem., Ed. Int. 2011, 50, 6722-6737.
- (16) Britton, G.; Liaaen-Jensen, S.; Pfander, H., Eds. Carotenoids. Part 2. Synthesis; Birkhäuser: Basel, 1996.
- (17) Ito, M.; Yamano, Y.; Tode, C.; Wada, A. Arch. Biochem. Biophys. 2009, 483, 224–228.
- (18) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, 2003.
- (19) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900–1923.
- (20) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243-251.
- (21) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2009, 110, 1746–1787.
- (22) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490-4527.
- (23) Fürstner, A. Chem. Commun. 2011, 47, 6505-6511.
- (24) Kajikawa, T.; Iguchi, N.; Katsumura, S. Org. Biomol. Chem. 2009, 7, 4586–4589.
- (25) Fontán, N.; Domínguez, M.; Álvarez, R.; de Lera, Á. R. *Eur. J.* Org. Chem. 2011, 6704-6712.
- (26) Arnaboldi, M.; Motto, M. G.; Tsujimoto, K.; Balogh-Nair, V.; Nakanishi, K. J. Am. Chem. Soc. **1979**, 101, 7082–7084.
- (27) Nilsson, Y. I. M.; Aranyos, A.; Andersson, P. G.; Bäckvall, J.-E.; Parrain, J.-L.; Ploteau, C.; Quintard, J.-P. *J. Org. Chem.* **1996**, *61*, 1825–1829.
- (28) Barber, M. S.; Jackman, L. M.; Manchand, P. S.; Weedon, B. C. L. J. Chem. Soc. (C) **1966**, 2166–2176.
- (29) Davies, R. H.; Hallett, C. J.; London, R. A.; Rees, A. F. Phytochemistry 1974, 13, 1209-1217.
- (30) Ruiz-Sola, M. A.; Rodríguez-Concepción, M. The Arabidopsis Book 2012, 10, e0158.
- (31) Takaichi, S.; Sandmann, G.; Schnurr, G.; Satomi, Y.; Suzuki, A.; Misawa, N. *Eur. J. Biochem.* **1996**, *241*, 291–296.

979